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Abstract- The high volume of Earth Observing System
data has proven to be challenging to manage for data centers
and users alike. At the Goddard Earth Sciences Distributed
Active Archive Center (GES DAAC), about 1 TB of new data
are archived each day. Distribution to users is also about 1
TB/day. A substantial portion of this distribution is MODIS
calibrated radiance data, which has a wide variety of uses.
However, much of the data is not useful for a particular
user's needs: for example, ocean color users typically need
oceanic pixels that are free of cloud and sun-glint. The GES
DAAC is using a simple Bayesian classification scheme to
rapidly classify each pixel in the scene in order to support
several experimental content-based data services for near-
real-time MODIS calibrated radiance products (from Direct
Readout stations). Content-based subsetting would allow
distribution of, say, only clear pixels to the user if desired.
Content-based subscriptions would distribute data to users
only when they fit the user's usability criteria in their area of
interest within the scene. Content-based cache management
would retain more useful data on disk for easy online access.
The classification may even be exploited in an automated
quality assessment of the geolocation product. Though
initially to be demonstrated at the GES DAAC, these
techniques have applicability in other resource-limited
environments, such as spaceborne data systems.

1. INTRODUCTION

Data system operations today are generally automated
without regard to the specific content of the data; that is,
operational decisions do not in general adapt in response to
the content of the science data being managed. This
automation could be improved dramatically by
incorporating decision-making based on the data content.
We are employing machine learning algorithms in this
decision support role to achieve intelligent data
management of data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) at the Goddard Earth
Sciences Distributed Active Archive Center (GES DAAC).

The calibrated radiance data from MODIS is used
widely, in a variety of disciplines, but users often have
difficulty in obtaining scenes that are usable for their
particular purposes: the volume is large, and there is no
efficient way to select data that are usable from a particular
point of view (say, cloud-free for an oceanographer, or
cloudy for an atmospheric scientist). Furthermore, only a

certain amount of data can be retained on disk for direct
access; it would be useful to retain the most interesting,
usable data (Table 1).
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Ocean Color X
Land Vegetation X
Snow Cover/Sea Ice X
Wildfires X

Table 1. Usefulness of various pixel types for different studies.

The characterization data needed to support the above
decisions is actually output by downstream science
algorithms in the oceans, land or atmospheres processing
chains. However, by the time the information in these
downstream products is available (from 30 minutes to
several days later), the data have often already been
shipped, utilized and/or deleted from cache. The goal of
using machine learning algorithms to estimate the output
of these science algorithms is to reduce the processing time
and computing requirements to a point where the
estimations can be incorporated into the data stream,
thereby allowing timely content decisions.

Machine learning algorithms such as neural networks
and clustering have been used for decision support in
business and policy domains. These techniques have
found some use in remote sensing, e.g., for cloud and land
cover classification. Yet most research on remote sensing
data rests on science-based algorithms, such as those based
on radiative transfer equations. Machine learning for



scientific applications faces challenges such as
discretization constraints, non-physical basis, and the
difficulty of assembling training sets. However, these
difficulties may be less significant in the decision support
role. For instance, it is often enough to know whether a
data attribute exceeds a certain threshold when selecting it
for an application, without knowing the exact value. The
difficulty of obtaining training data can be surmounted by
using products output by the science-based algorithms. On
the other hand, an advantage of machine learning
algorithms for decision support is their speed once they
have been trained. Data management decisions must be
made while the "fresh" data are still on disk, and in time to
service near-real-time applications, i.e., within minutes.

II. NAiVE BAYES CLASSIFICATION

Our approach uses an automatic classifier to
characterize the content of MODIS calibrated radiance
data. The purpose is not to create a science product, but
rather to enable more effective and efficient management
of the product. For these purposes, we need a classifier
that is simple, non-parametric (i.e., not strongly dependent
on tuning parameters), and most of all, fast in terms of
execution speed. This last criterion is important for two
reasons: (1) the processing budget at the GES DAAC
emphasizes the production of science data over data
management activities and (2) data management decisions
must usually be made shortly after the data are produced in
order to be useful.

A Naive Bayesian Classifier is used to characterize the
data immediately after production to support data selection
and caching decisions. The data are classified into several
relatively coarse categories such as: cloud, oceanic sun-
glint, shallow water, deep water, snow, sea ice, fire, land
and desert. The classifier is trained against the output of
the downstream science algorithms, such as cloudmask
and ocean color.. While these do not represent the ground
truth one would need for a science product, they serve as
an effective proxy for decision support.

The Naive Bayes Classifier derives from Bayes rule of
conditional probability:

prob(X|Y,I) = prob(Y|X,I) x prob(X|I) / prob(Y|I),

or the posterior probability is proportional to the product of
the likelihood function and the prior probability. In
supervised Bayes classification of numeric data (such as
the calibrated radiance), we begin with a training set where
each evidence vector E (i.e., the radiance values in each
channel) has been assigned to a class C. Training consists
of computing the probability density function for each
combination £; and C, i.e., Pr(E; |C), and the overall
probability for each class. The forward application of the
classifier computes the probability for each possible class
Cas:

Pr(C|E) =II Pr(£; |C) x Pr(C) / Pr(E)

(In practical applications, the denominator is usually
bypassed by computing a normalization over all the
classes.)

The training of the algorithm consists of approximating
the probability distribution functions through histograms
of calibrated radiance (or reflectance) for different classes
of pixels. The classification of a given pixel is derived
from MODIS science products. For example, pixels
classified as cloud are identified through comparison with
the MODIS cloudmask product MOD35[1]. Conveniently,
this product also includes identification snow/ice, of land
vs. sea, and of desert areas. (These are not computed by
the algorithm, but rather acquired from various ancillary
files.) A glint flag is also present, but the determination of
glint in the cloudmask product is somewhat broader than
that used by the MODIS ocean color algorithms. Since the
latter glint is more germane to the usefulness of data for
ocean color applications, we used the glint from Level 2
(swath-based) ocean color products instead. Fig 1 shows
the histograms for Band 1 radiance for the various classes.

Forward application of the algorithm to unknown pixels
begins with looking up the probability of the observed
radiance in the histogram for each class. For a given class,
the probability is multiplied across all bands used in the
classifier, then multiplied by the prior probability of that
class. The class with the highest probability is selected.
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Fig 1. Frequency distribution of logarithmic calibrated
radiance or Band 1 of MODIS in each class.

The prior probability is computed based on the season
and geographic area (Fig 2). Twenty geographic regions
were defined, based on climate distribution in latitude and
either uniform or extreme distribution of categories in
longitude, following Lydolph’s climate distribution[2]. A
set of prior probabilities was computed for these
geographic regions using MODIS global gridded products
for cloud, ocean-sunglint, shallow water, land/desert area
and snow cover, together with the Near-real-time Snow
and Ice Extent (NISE) product derived from SSMI.
Different sets of priors were developed for Dec-Feb, Mar-
May, Jun-Aug and Sep-Nov.
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Fig 2. Regional variation of prior probabilities for December-February.

The resultant classifier is reasonably efficient at daytime
classification in low to moderate latitudes. Fig 3 shows
results for Terra/MODIS on 16 October 2003, 1620Z to
1625Z, covering the eastern half of North America. The
leftmost picture is a true color image of the scene; the
middle picture shows the classifications from the MODIS
Cloudmask product; and the rightmost picture shows the
classifications from the Bayesian classifier. Though there
are some discrepancies, the correspondence is close
enough to use for data management purposes. Just as
importantly, the Bayesian classifier is extremely fast. Fig
4 shows algorithm timing results on a 250 MHz SGI
Origin 2000 for the Bayesian classifier, using from 1 up to

8 bands, as well as the MODIS cloudmask science
algorithm. Because the Bayesian classifier uses simple
table lookups and multiplication, it consumes a negligible
amount of processing resources. For data management,
this speedup is the tradeoff for reduced accuracy relative to
the science algorithm.

This Bayesian classifier also has the virtues of being
conceptually simple and robust in practice, requiring little
in the way of manual tuning. In addition, its output is not
limited to a simple nominal classification, but includes a
probability assigned to each class. This allows tuning to
be implemented at the decision point, i.e., by adjusting the
probability threshold needed to trigger a certain action.
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Fig 3. Terra/MODIS scene for 16:20Z-16:25Z, 16 October 2003. The left shows a true-color image, the middle is a
classification derived from the MODIS cloudmask product, and the right shows the results of the Bayesian classification.
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Fig 4. Timing results of Bayesian classifier using from
1 to 8 bands for a 300 second scene, alongside the MODIS
cloudmask algorithm.

IIT. CONTENT-BASED DATA MANAGEMENT

A primary goal of content-based data management is to
make maximum use of available resources. These
resources include storage resources, such as archive space
and online cache, as well as throughput-related resources
like network bandwidth. In addition, we also take into
consideration the resources at the data user’s end. Indeed,
these resources are often more limited than those of the
data provider. Fortunately, both sets of resources can be
optimized using a similar criterion: the expected
usefulness of the data to the end-user.

One straightforward application of this principle is to
distribute only the pixels that meet certain usefulness
criteria, rather than the whole scene. This content-based

subsetting can be achieved for small numbers of pixels
simply by extracting the individual pixels meeting the
desired criteria. However, when the number of useful
pixels is large, it is more efficient to mask out the
unwanted pixels and then compress the data using a
lossless technique such as Lempel-Ziv. In this case, we
use the internal compression capabilities of the
Hierarchical Data Format to construct a data file with
exactly the same structure and properties, but which is
much smaller than the original file. Fig 5 shows an
example where the cloudy pixels have been masked out,
leaving only the clear-sky pixels. Another element of
selectivity based on usability addresses whether a user’s
area of interest within a scene contains usable data.
Unfortunately, this kind of content-based selection is
difficult to implement for ad hoc searches. Because we
cannot predict all users’ areas of interest, the content
information for all pixels must be stored in a searchable
catalog, a formidable technical challenge. On the other
hand, if we limit content-based data selection to
subscriptions, the problem becomes more tractable. Since
we now examine each scene at the time of creation, the
detailed content need not be stored or catalogued. Thus, a
user might be able to specify: “send me data whenever the
area around Lake Winnebago, Wisconsin is cloud-free”.
This would avoid transmissions of data where the overall
cloud cover is generally low, but a given area is
nevertheless covered by cloud (Fig 6).



Fig 5. MODIS scene for 16:45Z, 23 September 2002,
with cloud pixels masked out.

Another optimization that can be achieved is the
management of precious cache resources. The GES
DAAC maintains a 50 TB “Data Pool”, an anonymous
FTP area where data can be simply downloaded and on-
the-fly services can be applied. While 50 TB seems large
in 2004, it is yet a very small proportion of the GES
DAAC’s overall holdings of over a petabyte. As a result,
even such popular products as the MODIS Level 1B may
have a residence time in the Data Pool of only a few
weeks, whereupon they are deleted to make room for new
scenes. Accordingly, one of the aims of this project is to
implement intelligent cache management in the Data Pool,
purging data that are expected to be less useful to most
users (in this case cloudy data for MODIS L1B), and
retaining particularly useful scenes.
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Fig 6. Conceptual example of content-based subsetting:
"send me scenes only when the area around Lake
Winnebago, Wisconsin is clear".

In addition to science and applications users, the
downstream science processing algorithms in a data
system constitute another important user group. For these
“users”, it may be pointless and wasteful to process certain
data if the quality is poor. We have begun work on a
proof-of-concept to automatically assess the quality of
MODIS geolocation data, a key input for nearly every
other MODIS product. Geolocation quality is typically
assessed in an “offline” mode using control chips and
island matching[4]. However, it would be useful to detect
quality problems within the processing stream itself, so
that they can be addressed quickly, without affecting the
downstream processing. This is particularly the case for
Direct Readout stations, which rely on a predicted
ephemeris for processing data from the Aqua satellite,
resulting in less accuracy than use of the later-arriving
definitive ephemeris.

Our approach is to use the Bayesian classifier to identify
land, water, cloud etc. We then use land-sea mask values
for the same pixels, extracted from a digital elevation
model using the latitudes and longitudes in the geolocation
product. Thus, if the geolocations are incorrect in any kind



of systematic fashion, the land/water pattern in the
Bayesian classifier should show a systematic shift relative
to that generated from the digital elevation model.

As it happens, a glitch in GES DAAC production of the
Terra/MODIS Level 1 data provides an ideal test case.
The data from June 19, 2002 were inadvertently processed
using onboard attitude and ephemeris. Though these are
generally preferred to the definitive attitude and ephemeris
for accuracy reasons, the onboard attitude/ephemeris is
unreliable in the general vicinity of spacecraft maneuvers,
such as the drag make-up maneuver that occurred on June
19. In this case, significant errors of up to several
kilometers were introduced into the geolocation product.
(The error was actually first noticed by science researchers
studying land cover change, and the data were
subsequently reprocessed with the correct definitive
attitude and ephemeris.)

Our procedure is as follows:

1. Classify the Level 1B data as to cloud, water,
land, desert.

2. Extract a relatively cloud-free square from the
scene.

3. Extract the land-sea mask values for the same
square from the MODIS geolocation product

4. Convert the pixel classifications in each square
into floating-point numbers by assigning land (or
desert) the number +1.0 and water the number
—1.0. Any other classification, such as ephemeral
water in the land-sea mask or cloud in the
classification, is assigned a random number,
uniformly distributed in the interval (-1.0,+1.0).

5. Compute the cross-correlation of the two squares
by applying a 2-D FFT to each, multiplying one
by the complex conjugate of the other, and
inversely transforming the result.

The procedure is illustrated in Fig 7 for part of the
Terra/MODIS scene from 18:20Z-18:25Z, 19 June 2002.
The cross-correlation in the bottom right indeed indicates a
systematic shift, as does the mismatch plot in the bottom
left. In order to automatically apply the technique, we still
need a way of determining the significance of any shift
detected in the cross-correlogram, but the technique
appears to show some promise.

IV. CONCLUSION

The Bayesian classifier used in this study is far from
sophisticated, yet it provides adequate results for the
various data management uses to which we apply it.
Indeed any similar classifier (such as neural nets) can serve
the same purpose if only it is fast enough. After all, our
goal is not so much the most accurate possible
classification, but rather to utilize the classification to
maximize the use of storage, throughput and processing
resources within the GES DAAC. Furthermore, the
applications are not limited to ground-based data archives.

Content-based data management is useful anywhere that
resources are limited, such as spaceborne data systems.
The most dramatic impact is in actually tasking sensors
based on the content of data from other sensors[5].
However, other limited resources may benefit as well, such
as solid-state recorder space or instrument-to-ground
communications.

Fig 7. Automatic quality assessment of MODIS
geolocation. Top: land/water/undetermined classification
derived from geolocation product’s land/sea mask (left)
and Bayesian classification of calibrated radiance (right).
Middle: conversion of land/water classifications into
floating point. Bottom left: mismatch between land-sea
mask and Bayesian classification of land and water. Red is
water in land-sea mask and land in Bayesian classification;
yellow is the reverse. Bottom right: cross-correlation of
land-sea mask and Bayesian classification.
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